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1. Abstract

Parallel slit-slit devices are commonly used to measure the transverse emittance of
a particle beam, selecting a portion of the beam with the front slit and measuring the
angular distribution with the rear. This paper calculates the effect of finite slit sizes
on measured emittance and Twiss functions in the case of Gaussian spatial and angular
distributions of the oncoming beam. A formula for recovering the true emittance from
the measured values is derived.

2. Introduction

One of many devices used to measure the beam emittance is a two-slit emittance
scanner [1], which consists of two narrow slits separated by a distance L (Fig. 1).
The beam is sent to the front slit of the scanner, which then cuts out a flat ‘beamlet’.
The transverse beamlet expands proportionally to its initial angular spread and is thus
measured by moving the back slit, recording the current passing through both slits with
a collector. Repeating the measurement at various front and rear slit positions allows
for reconstruction of a full phase space portrait and calculation of the beam emittance.

Alternatively, in an Allison scanner [2] the beamlet is moved across the back slit, the
position of which is fixed with respect to the front slit, by applying a transverse electric
field along the beamlet trajectory. If the quality of the electric field is good and effects
of secondary particles are minor, both scanners give the same result and are affected by
the slit size in an identical manner.

Effect of finite slit size is discussed in [3]. However, the formula derivation is not
presented (only referenced to a private communication), and the formula itself clearly
has a typo because dimensions of terms in the sum differ.

In this paper, we derive formulae for this effect to be directly applied to measurements
made with the Allison-type emittance scanner at Fermilab’s PXIE LEBT [4].

Date: March 20, 2015.
* r.d’arcy@ucl.ac.uk.

1



beam axis 

L 

2d1 

2d2 

x2 

x1 

y1 

y2 

front slit rear slit 

(x2-x1)+(y2-y1) 
L 

Figure 1. Example geometry of a two-slit collector, displaying notation
defined for all calculations in this paper.

3. Assumptions and Notation

Consider a Gaussian beam distribution with normalised phase density

(1) f(x, x′) =
1

2πε0
e
−x

2+(αx+βx′)2
2ε0β ,

where α and β are Twiss functions at the front slit and ε0 is the real emittance.
The beam phase portrait is measured by a scanner with two infinitely long slits, with

width 2d1 at the front and 2d2 at the rear. The measured emittance may be calculated
for such a scanner, assuming that steps of slit motion are much smaller than all relevant
dimensions i.e. summing can be replaced by integration.

At each step the position of the slit centres are denoted as x1, x2 and particle coordi-
nates (with respect to the slit centres) as y1, y2, where indices 1 and 2 refer to the front
and back slits respectively.

4. Calculation

At a given step of measurement the portion of the beam that reaches the collector Ic
is determined by integration of Eq. 1 over the surface outlined in Fig. 2.

To simplify calculations, we can integrate over y1 and y2:

(2) Ic(x1, x2) =

∫ d1

−d1
dy1

∫ d2

−d2
dy2

1

L
f

(
x1 + y1,

x2 + y2 − x1 − y1
L

)
.

2



x’ 

x 
x1 x1 + d1 x1 – d1 

(x2-x1)+(d1+d2) 
L 

(x2-x1)+(d1-d2) 
L 
(x2-x1) 

L 
(x2-x1)-(d1-d2) 

L 

(x2-x1)-(d1+d2) 
L 

Figure 2. Pictorial representation of the true phase-space acceptance of
the front and rear slits, bounded by the given limits.

The sum S0, measured with steps ∆x1 and ∆x2, can be approximated by the integral

(3) S0 ≡

∑
i,j

Ic(x1i, x2j)

∆x1∆x2 ≈
∫ ∞
−∞

dx1

∫ ∞
−∞

dx2 Ic(x1, x2) .

This form can be integrated analytically by changing the order of integration, followed
by a substitution of variable,

S0 =

∫ ∞
−∞

dx1

∫ ∞
−∞

dx2
L

1

2πε0

∫ d1

−d1
dy1

∫ d2

−d2
dy2

1

L
f

(
x1 + y1,

x2 + y2 − x1 − y1
L

)
=

1

2πε0L

∫ d1

−d1
dy1

∫ d2

−d2
dy2

∫ ∞
−∞

dx1

∫ ∞
−∞

dx2 e
−

(x1+y1)
2+(α(x1+y1)+

β
L

(x2+y2−x1−y1))
2

2ε0β

=
1

2πε0L

∫ d1

−d1
dy1

∫ d2

−d2
dy2

∫ ∞
−∞

dx1 e
− (x1+y1)

2

2ε0β

∫ ∞
−∞

du
L

β
e
− u2

2ε0β

=
1

2πε0β

∫ d1

−d1
dy1

∫ d2

−d2
dy2

∫ ∞
−∞

dx1 e
− (x1+y1)

2

2ε0β

∫ ∞
−∞

du e
− u2

2ε0β(4)
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The rightmost integral may then be solved using the identity found in Eq. 18, leading
to

(5) S0 =
1√

2πε0β

∫ d1

−d1
dy1

∫ d2

−d2
dy2

∫ ∞
−∞

dx1 e
− (x1+y1)

2

2ε0β .

The same identity is again employed for the integral over x1, followed by definite
integrals over y1 and y2. The final result is

(6) S0 = 4d1d2 .

The integrals used to calculate the second moments are

Sxx =

∫ ∞
−∞

dx1

∫ ∞
−∞

dx2 x21 Ic(x1, x2) ,(7)

Sx′x′ =

∫ ∞
−∞

dx1

∫ ∞
−∞

dx2

(
x2 − x1
L

)2

Ic(x1, x2) ,(8)

Sxx′ =

∫ ∞
−∞

dx1

∫ ∞
−∞

dx2

(
x2 − x1
L

)
x1 Ic(x1, x2) .(9)

Proceeding with integration similar to that in Eqs. 4 and 5, and utilising the integra-
tion identities in Eqs. 19 and 20, the second moments are defined as

〈
x2
〉

=
Sxx
S0

= ε0β +
d21
3

,(10)

〈
x′2
〉

=
Sx′x′

S0
= ε0

(
1 + α2

β

)
+
d21 + d22

3L2
,(11)

〈
xx′
〉

=
Sxx′

S0
= −αε0 −

d21
3L

.(12)

Finally, the reconstructed emittance and Twiss functions from measured data are
given by

ε2m ≡
〈
x2
〉 〈
x′2
〉
−
〈
xx′
〉2

= ε20 + ε0

(
β
d21 + d22

3L2
+

1 + α2

β

d21
3
− α2d21

3L

)
+
d21d

2
2

9L2

= ε20 + ε0

(
β

3L2

[
d22 + d21

{(
1− αL

β

)2

+
L2

β2

}])
+
d21d

2
2

9L2
,(13)
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βm ≡
〈
x2
〉

εm
= β

ε0
εm

+
d21

3εm
,(14)

αm ≡ 〈xx′〉
εm

= α
ε0
εm

+
d21

3Lεm
.(15)

The relations of Eq. 14 and 15 for the measured Twiss functions may be substituted
into that of the measured emittance (Eq. 13). This conveniently gives the true emittance
exclusively in terms of measured parameters:

(16) ε20 = ε2m − εm
(
βm

d21 + d22
3L2

+
1 + α2

m

βm

d21
3
− αm

2d21
3L

)
+
d21d

2
2

9L2
.

The error on the measured emittance due to a finite slit size is therefore

(17)
εm − ε0
ε0

=

(
1− 1

εm

(
βm

d21 + d22
3L2

+
1 + α2

m

βm

d21
3
− αm

2d21
3L

)
+

1

ε2m

d21d
2
2

9L2

)− 1
2

− 1 .

5. Discussion

The results in [3] differ from those derived in this paper by typos and a numerical
coefficient in the expressions for αm and εm, as well as by the absence of the last term
in Eq. 13. Note that this term does not appear if the derivation is made by integration
of the distribution in Eq. 1, expanded near the location of the slits, as it requires slit
sizes much smaller than the width of both beam and beamlet.

As a numerical example of the effect, the error in measured emittance estimated with
Eq. 17 using dimensions of the PXIE Allison scanner (d1 = 0.2 mm, d2 = 0.5 mm,
and L = 118 mm), with typical beam parameters at the end of the PXIE LEBT (αm =
−0.56 rad, βm = 0.33 m, and εm = 14.4 mm mrad), is 3.2%.
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Appendix A. Exponential Integration Identities

(18)

∫ ∞
−∞

e−ax
2−2bxdx =

√
π

a
e
b2

a , where a > 0 .

(19)

∫ ∞
−∞

xe−ax
2+bxdx =

√
πb

2a3/2
e
b2

4a , where Re(a) > 0 .

(20)

∫ ∞
−∞

x2e−ax
2−bxdx =

√
π(2a+ b2)

4a5/2
e
b2

4a , where Re(a) > 0 .
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